

European Smart Windows Conference

Ing. Leopold Mader / LiSEC Austria GmbH / 25.02.2015 / Wels

- 1. Welcome
- 2. Market potentials of thermally toughened thin glass
- 3. Feedback from manufacturing plant
- 4. Typical advantages of thin glass

Our approach to thin glass

Why does LiSEC support thin glass development?

- Improvement of Insulating Glass
 - Vakuumglass
 - Multiple insulation glass
 - Control of functional layer
- Solar glass
- Multifunctional glass

Market potentials

40% of total energy consumption of air conditioned buildings is lost through the building's hull.

30 mio m² Insulation glass is manufactured yearly within Germany.

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

3. PAVING THE WAY TOWARDS LOW ENERGY CONSUMING BUILDINGS

Nearly 40%²⁷ of final energy consumption is in houses, public and private offices, shops and other buildings. As the figure shows, in residential homes, two thirds of this is for space heating.

Figure: EU-27 households' energy consumption at home, %

Source: Odyssee indicators, www.buildup.eu

A large energy saving potential remains untapped. Techniques exist to cut existing buildings' consumption by half or three quarters²⁸ and to halve the energy consumption of typical

Energy saving potential of multiple insulation glassMarket potentials

Comparison of 2 to 3-fold

Improvement of Ug-value from 1,1 to $0.6 = \Delta - 0.5 \text{ W/(m}^2\text{K)}$

Reduction of Heating consumption per year and per m² by about 37 kWh

Reduction of primary energy consumption per year and per m² by about **47 kWh**

Forecast 3-fold to 4-fold

Improvement of Ug-value from 0,6 to 0,3 = Δ - 0,3 W/(m²K)

Berechnungen: Universität Kassel – CESR Ug-Wert 4-fach Verglasung: Berechnung IFT

^{*} Raumtemperatur 20°C (Standardklima D entsprechend PHPP)

Energy input for the manufacture of additional chamber

4mm Glass

3,85mm TVG+ 49,8 kWh/m² Glass

Closing of IS element

Spacer+Butyl 18mm 4,9 kWh per peripheral meter

Filling of Argon for 18mm free volume 0.1 kWh/m²

Energy consumption of Iso Line 1 kWh/m² (Quelle TS-LiSEC)

Total Energy Input

70 kWh/m²

2mm Glas

1,85mm TVG+ 27,8 kWh/m² Glas

Closing of IS element

Spacer+Butyl 18mm 4,9 kWh per peripheral meter

Filling of Argon for 18mm free volume 0.1 kWh/m²

Energy consumption of Iso Line 1 kWh/m² (Quelle TS-LiSEC)

Total Energy Input 48 kWh/m²

When using 2mm glass instead of 4mm glass the Total Energy Balance is leveled within 1 year

Berechnungen: Universität Kassel - CESR

^{*} Die Primärenergiebetrachtung beinhaltet alle Energieaufwendungen für die Herstellung des Produkts von der Bereitstellung der Rohstoffe bis zum fertigen Produkt am Werkstor ("kumulierter Energieaufwand" KEA)

Feedback from manufacturing plant

Feedback from Winterglas GmbH (A) and Energy Glas (D):

- Reduced breakage loss
- Reduced storage area → optimisation of glass storage possible

Feedback from overseas markets:

 2,35mm glass becoming a standard thickeness in US

Edge Processing

Feedback from manufacturing plant

Edge seaming with belt

Edge Processing with peripheral wheel

Tempering

Feedback from manufacturing plant

- Air Cushion Tempering Process
- System details
- Properties of Glass

Air Cushion Tempering Process

Tempering

The Air Cushion Tempering Process enables:

- Thin glass sheets to only 1.8mm thickness in perfect quality
- Thin glass sheets of enormous strength and flexibility
- Energy savings up to 40% in the tempering process
- Reliable high output
- Easy to operate

System BenefitsAir Cushion Tempering Process

The new LiSEC technology

- Glass surface remains untouched
- Air cushion instead of ceramic rollers
- Maximum convection in the circulation system
- Balanced energy input

Conventional technologies

Typical advantages of thin glass

- Improved absorption of climatic loads
 - Wider unit configurations are possible
 - Lower load on the spacer bars
 - Improved Ug values
- Improved working conditions for window construction employees, thanks to the ligther weight
 - During production
 - When installing at the construction site
- Excellent lamination properties
 - Lower rejection rate due to air or other imperfections
 - Shapeable laminates
- Optimisation in window construction
 - Lower load on the fittings
 - Longer window service life
 - Reduced cost for fittings

Loading of glasses

Typical advantages of thin glass

Temperature: 4-fold / Moscow South-Autumn

- Stresses based on differences in the temperature profile result in deformation of the glass panes. (Membrane effect)
- When using thin glass, these stresses can be dealt with in a perfect manner.

FE-Simulation of climate load

Typical advantages of thin glass

Calculation / Simulation of stresses & deformation inside the glass

- Room temperature = 20°C
- Outside temperature = -20°C

Combination 4/20/2/20/2mm

Combination 4/20/4/20/4mm

Typical advantages of thin glass

Installed in standard Windows

Thank you for your attention!