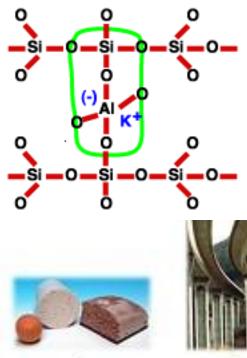


LEEMA - Low Embodied Energy Insulation Materials and Masonry Components for Energy Efficient Buildings

Dr. Monika Zervaki, S&B Industrial Minerals December 3rd, 2015, Brindisi

Objectives

Large Industries	-	S&B INDUSTRIAL MINERALS	GR	
	SS	Etex Group (Redco)	BE	
	dustri	SCHLAGMANN BAUSTOFFWERKE	DE	
	rge In	THERMAL CHERAMICS de FRANCE	FR	
	La	Morando S.r.I.	IT	
		FIBRAN	GR	
L	ų	FENIX TNT S.r.o.	CZ	١
	SME	AMS Solutions	GR	
	utes	NATIONAL TECHNICAL UNIVERSITY OF ATHENS	GR	
Universities –	stitu	MPA University of Stuttgart	DE	ul
	Research Institutes	Centre Scientifique et Technique de la Construction (BBRI)	BE	
	Re	MFPA University of Weimar	DE	
		D'APPOLONIA SPA	IT	
		Architects Council of Europe (ACE)	BE	

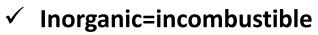

- Development of a new generation of inorganic insulation materials and building insulation masonry components ("31") with lower embodied energy (>50%) and lower cost (15%) and upgraded properties compared to the commercial ones
 - Improvement of durability and energy performance at building level
- Safer and cleaner indoor building environment due to incombustibility and absence of organic/fibrous compounds
 - Use of wastes of industrial minerals exploitation, recycled rejects from the glass industry and industrial by-products

Insulating Inorganic Incombustible Materials and Masonry Components

Inorganic Polymers

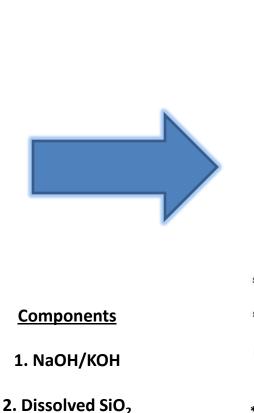
Geopolymer foam

Geopolymer cement


Carbon-Geopolymer composites

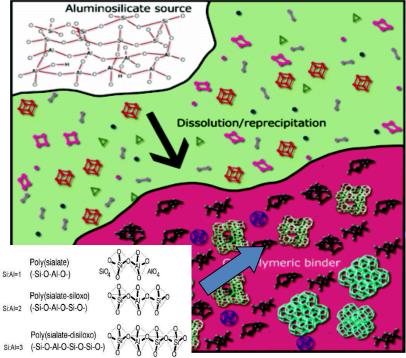
Fire-proof materials

Natural stone or geopolystone® ?



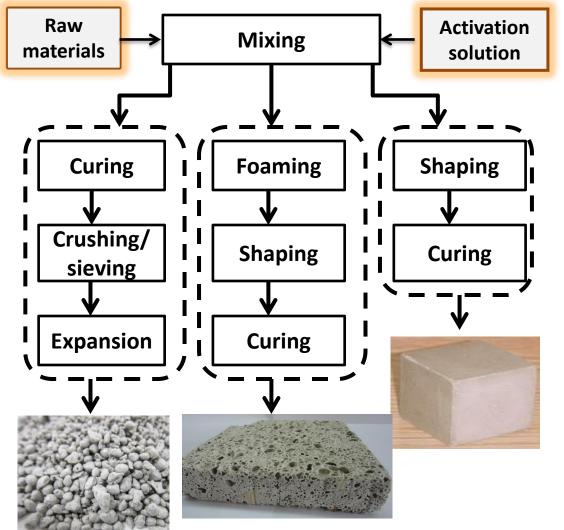
- Good mechanical properties- quick compressive strength development
- Low thermal conductivity coefficient
- Exploitation of aluminosilicate/silicate wastes, recycled materials, by-products
- **Energy efficient synthesis process**
- ✓ Low carbon footprint
- **Compatibility with current manufacturing** processes

How to make inorganic polymers?



3. Water

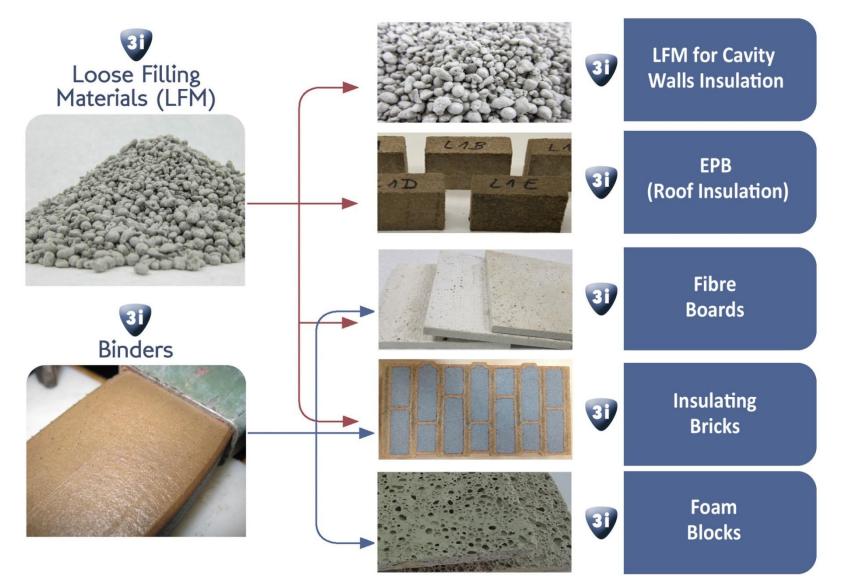
Schematical representation of reaction**



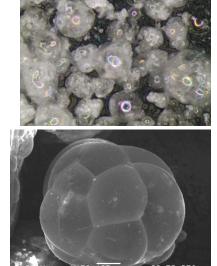
* *Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results J. L. Provis, G.C. Lukey, J. S. J. van Deventer

> 4 Brindisi, December 3°, 2015

Low energy production



- Use of mineral tailingswastes, recycled glass and other industrial by-products
- ✓ Curing at low temperatures (50-100 °C) for 24-72h to obtain mechanical properties
- ✓ Expansion using energy efficient Infrared Heating


The LEEMA Products

31 Loose Fill Materials (31 LFM)

Material	Application	Density (Kg/m³)	λ ₁₀ (W/mK)	Comp. Res. (psi at 2")	EE (MJ eq./FU)
	For Brick cavities/EPBs	44.8	0.034	24.7	11
LEEMA	For Fibre boards	96.5	0.041	67.8	34
3I LFM	For Cavity walls insulation	60.6	0.038	37.7	21
Expanded perlite	Commercial Loose Fill insulation	50 – 120	0.045 - 0.070		53
EPS beads	insulation	15 - 35	0.032 - 0.040		82

Main advantages

- ✓ Lightweight, multifunctional, inorganic, inert and incombustible
- ✓ **Synthetic:** Can be **fine-tuned** according to application; (d: 15 to >120 kg/m³)
- ✓ Excellent thermal performance: $\lambda 0.034 0.041$ W/(mK)
- ✓ Sustainable: based on wastes and recycled raw materials, expanded at moderate temperatures (500 – 600 °C) compared to expanded perlite (~ 1200°C) using IR heating
- ✓ **54% to 76% lower embodied energy** per FU (*FU*: $1 m^2$ of insulation with a R = $1 m^2 K/W$)
- \checkmark Preliminary simulations: 3I LFM can reduce space heating energy demands by 70%
- ✓ Free flowing and easy to install using standard procedures

3I Binders

Material type		Compressive Strength (MPa)	Flexural Strength (MPa)	Thermal conductivity (λ) (W/mK)	Density (Kg/m³)
LEEMA	Alk. act.	21	5.97	0.1921	1484
3I Binders	Alk. Silicate act.	28	7.76	0.2641	1604
Cement				0.72	1860
Clay Bricks				0.62-1.3	1300-2080
Clay	tiles			0.8-1.3	1890-2000

Main advantages:

- ✓ Based on mineral tailings (wastes)
- Mechanical properties obtained after curing at low temperatures (~70 °C) after a few days
- Compatible with traditional aggregates and conventional shaping methods (moulding or <u>extrusion</u>)
- \checkmark Suitable for the production of pre-fabricated non-structural construction elements
- ✓ Embodied energy (for a typical perlite-based geopolymer) ~ 1.37 MJ/kg (cement 5.2 MJ/kg, fired ceramic bricks 3 MJ/Kg)

9 Brindisi, December 3°, 2015

31 Fibre Boards, 31 EPBs

3I Fibre boards

3I Loose Fill Materials replacing expanded perlite or exfoliated vermiculite

- Successful Pilot scale production No significant changes in production process
- ✓ λ 0.11-0.14 W/(mK)
- ✓ Similar density (up to +5%) but higher flexural strength (up to +44%)
- ✓ 3I binders could be used to replace cement, using moulding or extrusion as shaping methods

3I EPB

31 Loose Fill Materials replacing expanded perlite in Fesco boards

- ✓ λ< 0.05 W/(mK)</p>
- ✓ Density ~150 Kg/m³
- ✓ Flexural Strength ~0.35 MPa

Material Type	λ (W/(mK))	Density (Kg/m³)	Comp. Strength (MPa)	1/R for 20cm thickness (is approx. U – value) (W/(m ² K))	
3I Foamed Blocks	0.06 - 0.115	400-800	0.7 – 2.7	0.3-0.6	anner a
Autoclaved Aerated Concrete	0.07-1.4	200-1600	1-10	0.35-7.0	Sona 1.20m

Main advantages

- ✓ Foamed inorganic polymers
- ✓ Sustainable: Based on perlite wastes
- ✓ Inorganic or organic foaming agents
- ✓ Mechanical properties obtained after curing at low temperatures (~70 °C) after a few days
- ✓ Easy to cut retain shape and strength

31 Fibre boards, 31 EPBs

Material type	Density (Kg/m³)	Thermal conductivity (λ ₁₀) W/mK)	Comp Strength (MPa)	Flex. Strength (MPa)
3I EPBs	288	0.068	0.34	0.85
Reference (Fesco Boards)	162	0.052	0.29	0.79
3I FC Boards	920	0.133	-	11.7
Reference (FC Boards)	930	0.111	-	9.7

3I EPBs

- ✓ 3I Loose Fill Materials replacing exp.
 Perlite
- ✓ Totally inorganic No use of bitumen or fibrous materials
- Similar properties to commercial Fesco Boards

3I Fibre boards

31 Loose Fill Materials replacing exp. perlite or exfoliated vermiculite

- ✓ Successful Pilot scale production No significant changes in production process
- ✓ 3I LFM leads to similar density (up to +5%) but higher flexural strength (up to +44%),
- ✓ 3I binders could be used to replace cement, using moulding or extrusion

3I Insulating Bricks

The "simple approach": 3I Loose Fill Materials replacing expanded perlite

- λ value of infill 0.035 W/(mK) (-12.5-20% compared to perlite)
- ✓ Same production process
- ✓ Overall brick λ value ≤ 0.090 W/(mK)
- ✓ Embodied energy under evaluation, estimated reduction 10-15%

The "futuristic" approach:

3I binders replacing the ceramic brick body

- ✓ ≈ Mechanical properties, similar density and λ without using porosity modifiers
- Similar production process, without firing (>60% lower embodied energy)
- ✓ Optimized Extrusion under soft-clay conditions

Thanks for your attention!

. Monika Zervaki, S&B Industrial Minerals S.A M.Zervaki@sandb.com