

Sustainable, Innovative and Energy-Efficient Concrete, based on the Integration of All-Waste Materials

> Alessandro Largo, CETMA December 3rd 2015, Brindisi

Fully eco-sustainable concretes (up to 100% secondary raw materials)

Prototypes and real case demonstrators

Achievements

aim

Develop new concepts and technology routes to integrate secondary materials in the production cycle of concrete...

...resulting in an innovative, eco-compatible and cost-effective construction materials for **ready-mixed** and **pre-cast** applications, characterized by:

- light-weight
- Iow embodied energy
- Iow CO₂ footprint
- improved insulation performances

general info

Coordinator: CETMA (IT)

the team

16 partners from 10 countries

CETMA is a RTO founded in **1994** by ENEA with the aim of developing the Innovation System of Southern Italy

90 employees

researcher, engineers, designers & innovation managers

Departments

Materials and Structures engineering

Industrial design

Laboratories

- materials & technologies
- virtual reality
- prototyping

one of 50 (out 5100) research organizations with more than 50 employees in Italy one of the biggest research center not linked to a Large Enterprise

the idea

Secondary Raw Materials (SRM)

novel bindersnovel aggregates

Development of new technologies

SRM lightweight concrete

sustainableenergy-efficient

challenges: impact & sustainability

50% reduction of embodied energy most notably for the binder productions

Improvement of insulation properties

use of lightweight aggregates with insulation performances

50% reduction of CO2 emissions use of secondary raw materials (SRM)

Costs reduction

use of secondary raw materials (SRM)

Eco-Sustainable concrete

100% secondary raw materials (SRM)

the structure

the structure

level 1

novel eco aggregates and binders from SRM

level 1: novel eco aggregates from SRM

... from secondary raw materials

... to novel lightweight eco aggregates

lightness thermal insulation

level 1: novel binders from SRM

... from secondary raw materials

- PFA (pulverized fly ash) a *by-product* from power plants
- GGBS (ground granulated blast furnace) a by-product from steel industries
- Perlite (cyclones) tailings a by-product from mining activities

... to novel eco binders (geo – polymer)

- OPC replacment
- cost effectiveness
- Iow energy consuption
- reduced CO₂ emissions

what is a geo-polymer?

Alkali activated material (AAM)

Any binder system derived by the reaction of an alkali metal source (solid or dissolved, i.e. *activator*) with a solid silicate powder (i.e. *precursor*)

Geopolymers

A subset of AAMs, where the **binding phase** is almost exclusively **aluminosilicate** with low calcium content. The **activator** will usually be an **alkali metal hydroxide or silicate**

Low-calcium fly ashes and calcined clays are the most prevalent precursors used in geopolymer synthesis

Definitions from State-of-the-Art Report, RILEM TC 224-AAM)

the structure

level 1

novel eco aggregates and binders from SRM

level 2

combination of novel aggregates with OPC

level 2: characterization of novel SRM aggregates

Testing of novel aggregates to assess their suitability for LW concrete production

- G grading curves sieving method (EN 933-1)
- loose bulk density (EN 1097-3)
- particle density and water absorption pyconometric method (EN 1097-6, App C)
- Crushing resistance (EN 13055-1, App A)
- chemical tests water-soluble chloride salts, total sulfur content, acid soluble sulphates and organic compounds - (EN 1744-1)
- HSE assessments

level 2: characterization of novel SRM aggregates

Aggregate typology/size		Physical properties		Mechanical properties		Chemical properties				
		Loose bulk	Particle	Water	Crushing	Acid soluble	Water soluble	Total sulphur	Organic	
		density [kg/m ³]	density [kg/m ³]	Absorption [%]	Resistance [N/mm ²]	sulphates [%]	chloride salts [%]	content [%]	impurities	
Del musterne	0-4 mm	256	-	-	-					
Polyuretane	4-8 mm	336	330	10	1,35	0.177	0.031	0.134	acceptable	
(PO)	8-16 mm	164	300	11	1,60					
	Remix HD									
Remix	(0-2 mm)	-	-	-	-	-	-	-	-	
	Remix HD	200	910	10	2.50	0.011	0.125	0.020		
(RX)	(1-4 mm)	290	810	10	2,50	0.011	0.125	0.030	-	
	Remix LD	250		22	2.15	0 1 5 2	0.022	1.002	abcant	
	(8-12.5 mm)	359	660	22	2,15	0.152	0.022	1.063	absent	
Tyre rubber (TR)	0-0.6 mm	764	-	-	-					
	0.6-2 mm	403	-	-	-					
	2-4 mm	422	-	-	-	0.084	0.019	0.274	acceptable	
	3-7 mm	459	970	6	0,20					
	8-16 mm	419	1090	5	0,18					

Lightweight aggregates (EN 206-1: loose bulk density < 1200 kg/m³; particle density < 2000 kg/m³)

- Good particle size distribution
- All the aggregates are in **compliance** with the **chemical requirements**
- Not hazardous materials according to HSE evaluations

level 2: LW concrete (OPC & SRM aggregates)

Mix design, testing and **lab** optimization of **LW concrete** with traditional **OPC** and **SRM aggregates**

Testing

- workability by slump test (EN 12350-2)
- air content (EN 12350-7)
- fresh density (EN 12350-6)
- compressive strength (EN 12390-3)
- tensile splitting tests (EN 12390-6)
- thermal conductivity (EN 12664)
- UPV tests (EN 12504-4)

level 2: LW concrete (OPC & SRM aggregates)

Industrial up-scaling of **LW concrete** with traditional **OPC** and **SRM aggregates** for **ready mixed** and **pre-casted** applications

Aggregate	Torget explication	Target properties					
Aggregate	larget application	R _{ck} [MPa]	Density [kg/m³]	Workability			
Polyurethane (PU)	Blocks	3-20	700-1500	S1 - SCC			
Remix (RX)	Panels for facades	5-24	350-1700	S4 - SCC			
Ture multiple (TD)	Floor screed	3-10	700-1200	S4 - SCC			
Tyre rubber (TR)	Floor screed underlay	1-6	500-800	S1 - SCC			

Parametric study (optimization of cement content, natural aggregate content, water/cement, additive, aggregates proportioning)

level 2: LW concrete (OPC & SRM aggregates)

Industrial up-scaling of **LW concrete** with traditional **OPC** and **SRM aggregates** for **ready mixed** and **pre-casted** applications

Aggregates	Binder	Workability	Density [kg/m³]	Compr. strength [MPa]	λ [W/mK]	UPV [m/s]	Application
Polyurethane (PU); Natural aggregate	OPC	S1	1200	9.3	0.33	3310	blocks
Remix (RX); Natural aggregate	OPC	S4	1080	8.3	0.25	2730	panels
Tyre rubber (TR)	OPC	S2	1200	2.6	0.20	2210	insulating components

- Successful scaling-up from the lab to the industrial level
- Concretes suitable for **blocks**, **panels** and **insulating components**
- Reduced thermal conductivity

Conclusion

level 2: LW concrete (OPC & SRM aggregates)

Performance comparison with traditional LW concrete based on expanded polystyrene (EPS) – λ =0.35 W/mK (d=1000 kg/m³) and R_{ck} 5 MPa

Thermal conductivity (W/mK)

- higher thermal insulation performance for SUS-CON concretes
- higher mechanical performance for PU and **RX-based** concretes
- TR-based concretes have the lowest thermal conductivity (insulating components)

Brindisi, December 3rd, 2015

the structure

level 1

novel eco aggregates and binders from SRM

level 2

combination of novel aggregates with OPC

level 2

combination of novel binders with natural aggregates

lev. 2: LW concrete (SRM binder & natural aggregate)

Physical and chemical **characterizations** of **binders** and investigation of **potential for geopolymerization** (*identification of key parameters – chemical dosages, water content, curing temperature*)

Binder	Activator	Aggregate	Curing	Mortar compressive strength [MPa]
PFA	NaOH + waterglass	Traditional	oven curing	30
PFA/GGBS	NaOH + waterglass	Traditional	room temp	55
cyclones/µ-silica alkalis	NaOH	Traditional	oven curing	20
cyclones/µ-silica waterglass	NaOH + waterglass	Traditional	oven curing	22

Development of **geopolymeric concrete** with natural aggregates

Testing

- workability by slump test (EN 12350-2)
- fresh density (EN 12350-6)
- compressive strength (EN 12390-3)
- UPV tests (EN 12504-4)
- durability

lev. 2: LW concrete (SRM binder & natural aggregate)

Manufacturing of **concrete products** by **substitution** of **OPC binder** with **GP binder** from SRM

- façade panels
- building blocks

SCALING UP

aerated autoclave concrete (AAC)

The replicated concrete products (substitution of OPC with geopolymers) are fully conform to existing technical prescriptions

the structure

level 1

novel eco aggregates and binders from SRM

level 2

combination of novel aggregates with OPC combination of novel binders with natural aggregates

level 3

eco-sustainable concretes – 100% SRM

level 3: eco-sustainable concretes – 100% SRM

Mix design, testing and **lab** optimization of **SUS-CON LW concrete** with aggregates and binders from SRM (PU, plastics, tyres, PFA, GGBS, perlite)

Application	Workability	Density	Compressive		
Application	[cm]	[kg/m ³]	strength [MPa]		
Screeds	20-22	1100	3-6		
Blocks	0-5	1400	5-20		
Panels	9-20	1100	5-20		

level 3: eco-sustainable concretes – 100% SRM

Testing of the SUS-CON concretes performances

- Fresh state (workability, density)
- Hardened state
 - Mechanical (compressive strength, Young's modulus, Poisson's ratio, flexural strength)
 - Thermal (thermal conductivity, thermal expansion coefficients, heat capacity)
 - UPV (qualitatively evaluations of acoustic insulation)
 - Durability (carbonation tests, freeze-thaw, resistivity)

HSE evaluations (raw materials and production steps)

level 3: eco-sustainable concretes – 100% SRM

SUS-CON concrete	Aggr.	Binder	Work.	Density [kg/m ³]	Compr. Strength [MPa]	Flex. strength [MPa]	λ [W/mK]	UPV [m/s]	SUS-CON product
GEOscreedunderlay_P18	PU	PFA/GGBS	S4	1146	8.4	1.4	0.18	2018	Floor screed ulderlay
GEOpanel_R34	RX	PFA	S5	1440	6.8	1.3	0.34	1613	Panel for facades
GEOpanel_P17	PU	PFA/GGBS	S5	1089	6.6	0.9	0.17	1596	Panel for facades
GEOblock_R27	RX	PFA/GGBS	S1	1475	18.2	2.3	0.27	2668	Block
GEOblock_P31	PU	PFA	S1	1255	8.3	2.0	0.31	1760	Block
GEOblock_P32	TR	PFA	S5	1501	4.2	0.9	0.32	1595	Block
GEOblock_P21	PU	PFA/GGBS	S4	1184	15.1	2.1	0.21	2632	Block
GEOblock_P16	PU	PFA	S4	942	5.6	1.2	0.16	1344	Block
								•	

- Innovative concretes based on 100% SRM aggregates (PU, RX and TR) and binders (PFA and PFA/GGBS) successfully optimized for ready-mix and pre-cast applications
- Improved insulating performances
- Not hazardous (HSE analysis of raw materials and production processes)

SUS-CON prototypes production & demonstration

Production of **SUS-CON prototypes** and **testing** of the performances (i.e. mechanical tests, thermal and acoustic insulation and fire resistance)

SUS-CON products highly compatible with the existing concrete production processes (minimized equipment costs)

SUS-CON prototypes modelling

Numerical simulation of SUS-CON prototypes exposed to realistic environmental conditions (thermal, mechanical and acoustic behaviour)

SUS-CON prototypes allow a thickness reduction (up to 88% with the same thermal insulation) and lower consumption (up to 10% by HVAC) compared to NC

demonstration: application on real buildings

3 European demo sites (Spain, Romania, Turkey)

Mock-ups with SUS-CON prototypes

Pre-casted components (GEOpanels, GEOblocks)

Seady-mixed concretes (GEOscreeds)

demonstration: application on real buildings

Installation of SUS-CON GEOcomponents (panels, blocks) on real buildings

demonstration: application on real buildings

Mock-ups monitoring

- energy efficiency (temperature, heat flux)
- acoustic insulation performance
- thermographic survey

Tests on SUS-CON prototypes

mechanical tests
thermal insulation performance
fire behavior

impact & sustainability: LCA

SUS-CON products meet the -50% CO₂ target

impact & sustainability: LCA

SUS-CON products meet the -50% EE target

SUS-CON tool

http://www.sus-con.eu/

Information on secondary raw materials in different EU areas

- amounts
- trends
- regulations
- Database with SUS-CON recipes performances
- MIX DESIGN tool for SUS-CON recipes
 - performance based design (density, thermal conductivity and strength)
 - volumetric design

The construction industry is one of the largest consumers of energy and raw materials, and highest contributor to the emission of greenhouse gases

- The main aim of the SUS-CON project was to develop sustainable, innovative and energy-efficient concrete, using secondary raw materials
- SUS-CON blocks, panels and concretes include up to 100% of SRM and have excellent mechanical and thermal performance
- SUS-CON products are **highly compatible** with **existing concrete production processes** (minimized equipment costs)
- SUS-CON products and processes are **not hazardous** (HSE evaluation) and contribute to the **reduction of CO₂**, **EE** (50%) and **cost** (up to 15%)

improved insulation

reduced CO₂ emissions

conclusions & achievement

reduced

Energy

Embodied

properties

.000

CU₂

acknowledgments & contacts

SUS-CON project "SUStainable, innovative and energy-efficient CONcrete, based on the integration of all-waste materials" has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 285463 (Call FP7-2011-NMP ENV-ENERGY-ICT-EeB)

Project Website http://www.sus-con.eu/

Facebook page https://www.facebook.com/pages/Sus-Con-Sustainable-Concrete/

Contacts

Alessandro Largo (<u>alessandro.largo@cetma.it</u>) 0039 0831 - 449406 Department of Materials and Structures Engineering CETMA – Engineering, Design & Materials Technologies Center

Thanks for your attention!

Alessandro Largo, CETMA, Department of Materials Engineering and Structures alessandro.largo@cetma.it; +39 0831 449406